Refining Economics of the 2007 Amendments to the Phase 3 CaRFG Regulations California Air Resources Board Public Hearing June 14, 2007 MathPro Inc.	 Assignment Estimate effects in the California refining sector of the proposed 2007 Amendments to the Phase 3 CaRFG3 regulations Assess amendments' effects on CaRFG3 production capability with current refining process capacity CaRFG3 refining cost, after investment in new process capacity Consider the full range of allowable ethanol concentrations 			
David S. Hirshfeld and Jeffrey A Kolb	Identify key sensitivities and uncertainties			
Math Pro	June 14, 2007 TIMath <i>Pro</i> 2			

Overview of the presentation	1. Producing CaRFG3 Under the Amended PM3
 Background Scope of the analysis Technical approach Primary results and findings 	 Amended PM3 Introduces increase in VOC emissions due to ethanol permeation; and Requires improvements in CARBOB quality to offset permeation effect To produce complying gasoline and meet forecast demand, California refiners must Invest in new process capacity, Modify refining operations, and/or Use more ethanol
June 14, 2007 14, 2007 3	June 14, 2007 (Math <i>Pro</i>) 4

0	 -				
3	ec	nnica	ab	broa	ch
					~ ~ ~

- Used a refinery LP model to analyze
 - Short-term and long-term baseline cases
 - ► Eight study cases (2 periods, 4 levels of ethanol blending)
 - ► Two additional cases
- Model incorporates amended PM3
- Model represents aggregate operations of all California refineries producing gasoline
- Model calibrated to closely match reported aggregate operations of California refineries in Summer 2006

Key premises and assumptions

- > Steady-state operations (no upsets, 2006 capacity utilization rate)
- Excessed refinery streams can be sold, but at distress prices
- No degradation in emissions performance of gasolines produced for sale out of state (e.g., AZ CBG, Las Vegas gasoline)
- Price of ethanol = marginal cost of CARBOB

June 14, 2007

TMath Pro

Model's data content derived from. . .

- > Public data on California refineries
- Technical information, in aggregated from, obtained by CEC in confidential survey of refiners
- Information and insights obtained by MathPro Inc. in confidential discussions with some individual refiners

June 14, 2007

TMath Pro

Aggregate refinery modeling

- Standard analytical approach in studies such as this, due to limits on time, resources, and availability of refinery-specific data
- Represents refining operations as though every refinery were "average," in terms of capacity, gasoline properties, etc.
- Tendency to "over-optimize" to return results somewhat better than what can be achieved in practice
- Best used to estimate differences between cases baseline and regulatory cases, cases denoting different levels of ethanol use, etc.

June 14, 2007

TMath Pro

10

4. Primary results and findings Without refinery investment	These results likely over-state refining sector's short-term capability
Model indicates changes in CaRFG3 production capa > 0% EtOH: Operations infeasible	 Emissions reductions returned by PM3 are highly sensitive to changes in gasoline properties
ightarrow 5.7% EtOH: > 10% loss, with excessing of C ₅ s and FCC naphtha	 Over-optimization with aggregate refining model masks differences in capabilities of individual refineries
> 7.7% EtOH: 2-3% loss, with excessing of C_5 s > 10% EtOH: CaRFG3 volume maintained, with	Significant differences among California refineries in certain processing capabilities – especially with respect to sulfur control
excessing of C_5 s	Sulfur is a key property affecting NOx emissions
June 14, 2007 (TTMath Pro	11 June 14, 2007 TIMath Pro 12

4. Primary results and findings With refinery investment

	Weight Percent Oxygen			
Category	0.0%	2.0%	2.7%	3.5%
Refinery Investment (\$B)	1.5	0.2	-0.2	-0.2
Refining Cost (¢/g)	6.2	2.4		-0.3
Change in Fuel Economy (%)	0.8%	-0.2%	-0.7%	-1.5%

June 14, 2007

TMath Pro

14

- Aggregate refining model cannot directly estimate investment requirements of individual refineries
- But additional model runs returned estimates of total investments likely for sulfur control in refineries with sulfur content above average
- Additional runs stipulate that all medium and heavy FCC naphtha be hydrotreated

|--|

Effects of investment in sulfur control ("long-term" cases): all Med and Hvy FCC naphtha hydrotreated

	Weight Percent Oxygen		
Category	2.7%	3.5%	
Refinery Investment (\$B)	0.5	0.6	
Refining Cost (¢/g)	1.5	0.9	
Change in Fuel Economy (%)	-0.7%	-1.4%	

June 14, 2007

TMath Pro

18

Our analysis leads to these conclusions

- Refineries likely will blend ethanol in the range of 2.7 3.5 wt% oxygen
- Some refineries will invest in additional sulfur control directed at FCC naphtha